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ABSTRACT

Applications of differential inclusions in models of
population biology are discussed. It is shown that some
problems in population biology like patch selection, op-
timal foraging, environmental constraints and uncer-
tainty in dynamics and the environment lead naturally
to differential equations with discontinuous righthand
sides or to differential inclusions. Thus differential in-
clusions seem to be an unifying framework for models
of population biology.

INTRODUCTION

Investigation of differential equations describing
population biology originated from models in physics.
Since population biology belongs to “soft sciences”
rather than to “hard sciences” like physics, there may
be some difficulties to apply the same methodology,
i.e. differential equations. In fact, if we construct a
model of interacting populations we are faced with
the following obstacles that may not conform with the
standard theory of differential equations:

1. individuals may exhibit some preferences or
strategies (e.g. preference for food, avoidance of
predators etc.)

2. there may be some additional constraints that the
system should satisfy (e.g. space constraints, nu-
trient or toxin induced constraints) which are not
included into the dynamics

3. there is “uncertainty” in the dynamics (e.g. envi-
ronmental or demographic noise).

In this paper we show that all the above mentioned
problems lead to differential equations with set-valued
righthand sides, i.e. to differential inclusions. Thus the
theory of differential inclusions seems to be promising
as a new methodology for models in population biology
and, more generally, for models in soft sciences.

Differential inclusions generalize the concept of dif-
ferential equations. Namely, instead of considering an
ODE ��� ( � ) = � (

��� � (
�
))

we consider a differential inclusion

� � ( � ) �	� (
��� � (

�
))

where the map � is a set-valued map, i.e. it associates
with a point (

��� � ) � R 
 R � a set � (
��� � ) � R ��
 Thus

the dynamics is not uniquely given, since there may
be more directions in which the system may move. If
� (
��� � ) = ��� (

��� � ) � then we have an ordinary differen-
tial equation. Differential inclusions have been thor-
oughly studied and a fairly complete theory is now
available, (Aubin and Cellina 1984; Aubin 1992; Deim-
ling 1992). In these books also differential inclusions
with constraints are considered, namely

��� ( � ) � � (
��� � (

�
))� (

�
) � � �

where � is a given closed set which is called the viabil-
ity set. The problem of finding a solution of the above
problem is also referred as the viability problem. Dif-
ferential inclusions were also studied from numerical
point of view and several algorithms for simulations of
differential inclusions are currently available, (Lempio
and Dontchev 1992).

PATCH SELECTION

In (Colombo and Křivan 1993; Křivan 1995) a gen-
eral framework for including various strategies of indi-
viduals to population dynamics was given. This frame-
work depends heavily on the theory of differential in-
clusions. Here we give one simple example which de-
scribes the distribution of a population of predators
among two different habitat patches. This is a typical
example from behavioral ecology. The density of the
population of predators at time

�
is denoted by �

3(
�
).

We assume that predators move quickly between the
two different habitat patches where the density of food
is �

1(
�
) and �

2(
�
), respectively. Thus at each time

instant a part of the population of predators will oc-
cupy patch 1 and the rest will occupy patch 2. Let��� ( � ), ( � = 1

�
2) denote the fraction of the population

of predators which are in patch � . Thus

�
1 + �

2 = 1 
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To proceed further we define the population dynamics
in the term of a control system where controls are �

1

and �
2. Here we choose the simplest Lotka-Volterra

like dynamics (Colombo and Křivan 1993)

� �
1 = � 1 � 1 � � 1 � 1

�
1
�

3� �
2 = � 2 � 2 � � 2 � 2

�
2
�

3� �
3 =

�
3
�

1
�

1
�

3 +
�

4
�

2
�

2
�

3 ��� � 3 

(1)

All parameters in (1) are assumed to be non-negative.
Solution of (1) is a couple ( � (

�
)
� � (

�
)), where � (

�
) =

( � 1(
�
)
� �

2(
�
)
� �

3(
�
)) is an absolutely continuous func-

tion and � (
�
) = ( � 1(

�
)
� �

2(
�
)) is a measurable function,

such that (1) is satisfied for almost all
�
, (Aubin and

Cellina 1984; Aubin 1992). In behavioral ecology it
is often assumed that each individual behaves opti-
mally in the sense that it maximizes its growth and
thus reproduction (Stephens and Krebs 1986). This
leads naturally to the maximization of

� �
3�
3

=
�

3
�

1
�

1 +
�

4
�

2
�

2 ������ Max

thus to the following strategy map 	 ( � ) :

	 ( � )=


� � (1
�
0) if

�
3
�

1 
 � 4 � 2

(0
�
1) if

�
3
�

1 � � 4 � 2� ( � 1
� �

2) � � 1 + �
2 = 1

� ����� 0 � if
�

3
�

1 =
�

4
�

2 

Thus together with equation (1) we have the following
optimality constraint on possible controls � = ( � 1

� �
2):

� (
�
) ��	 ( � (

�
)) 
 (2)

We see that the dynamics (1) is not uniquely given
at points where

�
3
�

1 =
�

4
�

2. Thus (1) together with
(2) is a differential inclusion rather than a differential
equation. We have to show that (i) the model has a
solution, (ii) solutions are uniquely defined. Namely
the second part, i.e. the uniqueness of solutions may
look suspicious at the first sight, since the dynam-
ics itself is not uniquely defined. Nevertheless, us-
ing standard results from the theory of differential in-
clusions and differential equations with discontinuous
righthand sides it may be proved that solutions of our
model do exist and they are uniquely defined (Colombo
and Křivan 1993; Křivan 1995; Kastner-Maresch and
Křivan 1995). Moreover, it may be proved that stan-
dard numerical methods like Euler method or Runge-
Kutta methods or more advanced methods for dif-
ferential algebraic equations are convergent (Kastner-
Maresch and Křivan 1995). In Fig. 1 a simulation of
(1) together with (2) is given.

CONSTRAINTS

Besides the dynamics given either by a differential
equation or, more generally, by a differential inclusion
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Figure 1: Solution of (5), (7) with � 1 = 3 
 5 � � 2 = � =�
1 =
�

2 =
�

3 =
�

4 = 1 


we may have some additional constraints given by a
viability set � . It is assumed that the system can-
not exist outside its viability set � . Given a dynamics
and constraints we may decide whether the system is
viable, i.e. whether viable solutions do exist. However,
when constructing a model we are often faced with a
different problem: How to construct the dynamics such
that the constraints are automatically satisfied. Here
we show one possible approach for solving this prob-
lem (Křivan 1991; Kastner-Maresch and Křivan 1995;
Antonelli et al. 1993; Antonelli and Bradbury 1995).
We consider two populations denoted by �

1
� �

2 which
compete for a “space”. The total available space is
normalized to unity. Let us assume that those two
populations are not limited by anything else than the
total space available. We choose the simplest possible
dynamics, namely exponential growth for both popu-
lations

� �
1(
�
) = � 1 � 1(

�
)� �

2(
�
) = � 2 � 2(

�
) 


Together with this dynamics we have the constraint

�
1(
�
) + �

2(
�
) � 1

which defines the viability set

� = � ( � 1
� �

2) � � 1 + �
2 � 1 � 
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The above system together with the constraint does
not have a viable solution. Indeed, starting at a point
lying on the constraint line the system leaves immedi-
ately its viability set � . Since this is not possible (from
biological point of view) we conclude that the dynam-
ics must necessarily change along the constraint line,
i.e. on the boundary of the viability set where the sys-
tem is not viable. We may assume that on the bound-
ary of the viability set the mortality increases due to
the pressure of the environment, e.g. lack of the space.
Thus along the constraint the model becomes

� �
1(
�
) = � 1 � 1(

�
) ��� �

1(
�
)� �

2(
�
) = � 2 � 2(

�
) ��� �

2(
�
)

(3)

where � can be computed by differentiating the con-
dition �

1 + �
2 = 1. Thus we get

� = � 1 � 1 + � 2 � 2 for �
1 + �

2 = 1 

For � 1+ �

2 � 1 we set � = 0 
 With such � the dynam-
ics (3) becomes viable, i.e. all solutions (if any) will
satisfy the constraint. However, due to discontinuity
of the function � along the constraint line, (3) be-
comes a differential equation with discontinuous right-
hand side. It is well known that discontinuous differ-
ential equations may not have a solution. In general,
several notions of a generalized solutions for discontin-
uous differential equations were given. One of them
is so called Filippov solution (Filippov 1988). Roughly
speaking this is a solution to a certain differential inclu-
sion which arises from the original discontinuous dif-
ferential equation by convexifying the righthand side
at those points where it is discontinuous. Using this
approach it may be proved that (3) has a Filippov
solution (Křivan 1993). Moreover, it may be proved
(via arguments using differential inclusions) that in the
above problem solutions of the original discontinuous
equation do exist (Křivan 1991; Křivan 1993).

UNCERTAINTY IN DYNAMICS

In models of population biology we are necessarily
faced with the problem of uncertainty. Let us consider
a model of population dynamics which is given as an
ODE � � ( � ) = � ( ��� � (

�
)
� � ) 
 (4)

Here � denotes the unknown parameter which models
the uncertainty or noise. There are two approaches
towards this equation. The first one considers � as
a stochastic process and leads to stochastic differen-
tial equations. However, the statistical prerequisites
behind this approach may be difficult if not impossi-
ble to verify. Moreover the interpretation of the re-
sulting stochastic differential equation is not straight-
forward due to various possible stochastic integrals
(e.g. Stratonovitch and Itô integral).

The second approach that we want to discuss here is
the so called unknown-but-bounded noise. This means
that the only assumption on � in (4) is that it belongs
to a prescribed bounded set � , which may depend on
time or even on the state of the system. Then (4)
becomes a differential inclusion

� � � � (
��� � ) := ��� ( ��� � � � ) � � ��� �� (0) = �

0 
 (5)

The collection of all possible solutions of (4) for differ-
ent measurable functions � (

�
) ��� forms the solution

set 	 of (5). However, comparing (5) with its stochastic
counterpart we see that no probabilistic information is
provided together with (5). This is due to the fact that
admissible velocities are not distinguished one from an-
other, e.g. all of them are equally likely. An analysis of
(5) thus requires the study of infinitely many solutions.
If some additional knowledge on the noise is available,
e.g. some values of � are more likely then others, we
are faced with the problem of transferring this infor-
mation on the solution set of (5), in order to give more
precise estimates. This may be done via the theory
of metric likelihood for solutions of (5), (Colombo and
Křivan 1992). It is based on the following idea. The
set � is considered as a fuzzy set given through its
membership function � : � �� [0

�
1]. This membership

function has the meaning of “measuring how much a
point � belongs to the set � ”. The less likely points
of � are those with smaller value of � . The value 0
means that a point does not belong to � , so such an
event cannot occur. This membership function allows
to consider the set of trajectories of (4) as a fuzzy set
with the following membership function

L( � � � ) :=
1

�
���

0

� ( � (
�
)) 	 � 


Here � stands for the trajectory of (5) which corre-
sponds to the control function � . We note that L( � � � )
denotes the membership function of a solution � ( 
 ) on
the interval [0

� � ]. Using this membership function we
can distinguish those trajectories which are likely to
occur, namely we may compute the trajectory with
maximal likelihood from those which are not likely to
occur. In (Křivan and Colombo 1994), using the me-
dian instead of the mean, an analogue of the mean
extinction time, called median extinction time was de-
fined. Applications to exponential and logistic growth
were given in (Křivan and Colombo 1994).
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